Меню

По всем вопросам

+7 (495) 926-63-77 +7 (917) 574-07-30
icon_mob_logo
Корзина пуста

По всем вопросам

+7 (495) 926-63-77
+7 (917) 574-07-30
Какой усилитель лучше подходит для акустической системы

Какой усилитель лучше подходит для акустической системы

Класс А/В : это тот тип усилителей, который до недавнего времени применялся в Hi-Fi-аппаратуре в разы чаще, чем любой другой. Сейчас над ним уже нависла угрожающая тень усилителей класса D, занимающих все большую долю рынка Hi-Fi, но пока модели класса А/В по-прежнему в большинстве и сдаваться так легко они не собираются. В классе А/В могут работать как ламповые, так и транзисторные схемы, но если говорить об абсолютном большинстве класс А/В ассоциируется скорее с эпохой транзисторного Hi-Fi.

Принцип работы усилителей класса А/В

Из самого обозначения класса А/В нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.

hegel h390 1.jpg    
Интегральный усилитель класса A/B - Hegel H390 

Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?». Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.

Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах. Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.

hegel h390 2.jpg    
Интегральный усилитель класса A/B - Hegel H390    

Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.

На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи. Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.

hegel h390 3.jpg    
Интегральный усилитель класса A/B - Hegel H390    

Это позволило усилителю класса А/В незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим А/В.

Плюсы усилителей класса А/В

Рассматривать достоинства и недостатки класса А/В имеет смысл на фоне двух исходных технологий. Класс А/В однозначно и существенно выигрывает у класса А по энергоэффективности. Его реальный КПД достигает 70–80%, если конечно производитель не сильно увлекся поднятием тока покоя. С точки зрения звучания класс А/В превосходит класс А в те моменты, когда сигнал достигает высокой амплитуды или требуется высокая мощность. В то же время на малых уровнях громкости класс А/В обычному классу А не уступает, по крайней мере в теории. В сравнении с классом В, класс А/В куда лучше ведет себя на малых громкостях и способен отрабатывать самые тихие и деликатные моменты в музыке, но при этом сохраняет практически ту же мощь и силу на больших динамических всплесках.

Имея большую мощность и лучшую энергоэффективность, усилители класса А/В куда менее капризны при выборе акустики. Они не нуждаются в высокой чувствительности и легче уживаются со сложными кроссоверами, используемыми в многополосных колонках. Вполне справедливо будет заявить, что подавляющее большинство пассивных акустических систем выпускаемых сегодня на рынок рассчитаны на работу со среднестатистическим транзисторным усилителем класса АВ.

Минусы усилителей класса А/В

Объективные минусы у класса А/В можно разглядеть только на фоне еще более совершенных с технической точки зрения классов G, H или D, о которых мы расскажем чуть позже. В список претензий можно отнести разве что субъективные отзывы от ценителей класса А, которые, в целом, сводятся к тому, что класс АВ звучит не столь чисто, детально и изысканно. Чтобы оценить обоснованность данных претензий, рассмотрим схемотехнику усилителей класса А/В более детально, с точки зрения качества звучания.

Особенности усилителей класса А/В

Одной из практических проблем усилителей класса В и А/В является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.

В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор. Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе А/В.

Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс А/В нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса А/В. Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.

Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе А/В транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.

Выводы

Высокая мощность, высокий КПД с умеренным тепловыделением, способность справляться со сложной нагрузкой и хорошая динамика — вот что такое усилитель класса А/В. Это делает его, в первую очередь, идеальным решением для массового производства усилителей, что подтверждает сама история развития индустрии Hi-Fi.

Однако крайне ошибочно руководствоваться стереотипным мнением о том, что массовый универсальный продукт и продукт элитный должны быть непременно вылеплены из разного теста. При должном внимании к деталям и глубоком понимании принципов работы данная схемотехника может быть реализована на самом высоком уровне качества. Так что сегодня High End-усилитель, работающий в классе A/B — такая же обыденность, как и хайэндный усилитель, работающий в любой другой схемотехнике.



Класс D: при всем разнообразии схемотехнических решений, применяемых в усилителях звука, между ними можно без труда проследить преемственность и постепенное, эволюционное развитие. Сначала был класс А, потом В, потом АВ и все следующие за ним, которые по сути своей являются дальнейшим развитием класса АВ или А со всеми прилагающимися к этому достоинствами и недостатками. Но как же хорошо, что среди производителей Hi-Fi есть настоящие новаторы, которые не боятся внедрять смелые технологические решения! Иначе мы с вами никогда бы и не узнали о существовании усилителей класса D.

История создания усилителей класса D

В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель». И хотя некоторые принципы его работы действительно напоминают работу цифровых схем, по своей сути это абсолютно аналоговое устройство.

Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп. Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».

В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.

Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью. В наше время усилители класса D можно встретить в совершенно различных устройствах: от смартфонов и бытовой аппаратуры до студийного оборудования и High End-систем.

Принцип работы усилителей класса D

В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации. Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты. По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.

Pioneer A-70DA 1.jpg    
Интегральный усилитель класса D - Pioneer A-70DA   

В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET. Далее в схеме используется простейший LC-фильтр, демодулирующий усиленный сигнал, а также отсекающий несущую частоту и сопутствующий высокочастотный шум.

Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте. Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду. Таким образом, режим работы транзисторов существенно упрощается и становится куда более прогнозируемым. По сути, они выступают в роли ключа, находясь либо в закрытом, либо в открытом состоянии без промежуточных значений.

Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.

Pioneer A-70DA 5.jpg    
Интегральный усилитель класса D - Pioneer A-70DA   

Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM. Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.

Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.

Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.

Pioneer A-70DA 6.jpg    
Интегральный усилитель класса D - Pioneer A-70DA   

На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.

Плюсы усилителей класса D

Главный плюс усилителей класса D, ради которого и затевалась история с модуляцией сигнала — энергоэффективность. Причем и в теоретических выкладках, и в реальных цифрах это дает такой прирост КПД, с которым хоть как-то может сравниться разве что переход от класса А к классам В и АВ, а все достижения класса G и прочих на его фоне кажутся довольно слабой попыткой. Работая в импульсном режиме, половину времени транзистор проводит в полностью закрытом состоянии, а значит имеет нулевой ток покоя и не потребляет энергии. При этом в момент включения транзистор работает на полную мощность, перенаправляя всю энергию, поступающую от блока питания, на выход усилителя.

В итоге, эти самые теоретические 100% КПД при практической реализации дают действительно превосходные значения порядка 90–95%. А поскольку лишь единицы процента энергии расходуются на нагрев транзисторов, радиаторы можно использовать исчезающе малого размера. Для получения на выходе 100–200 Вт на канал усилитель класса АВ должен иметь радиаторы, занимающие одну или обе боковых стенки корпуса, а усилитель класса D обойдется кусочком алюминия размером в один-два спичечных коробка.

Кстати, то же самое можно сказать о размере платы усилителя мощности: в классе D она получается в разы компактнее, даже если собирается не на микросхемах, а на дискретных элементах. Ну и в завершение всего, усилители класса D имеют меньшую себестоимость, нежели сопоставимые по мощности модели других классов. Впрочем, последнее касается скорее DIY-проектов — производители же предпочитают вкладывать сэкономленные деньги в повышение качества звучания и прочие усовершенствования, тем более что в классе D и вправду есть что улучшать.

Минусы усилителей класса D

Обладая совершенно убийственными преимуществами, класс D не завоевал рынок Hi-Fi целиком и полностью лишь потому, что имеет свои слабые места, которые для многих ценителей качественного звука выглядят куда более значительными, нежели энергоэффективность. Наличие в схеме высокочастотного генератора само по себе является потенциальным источником электромагнитных помех, негативно влияющих на звучание самого усилителя и на работу соседствующих с ним компонентов звукового тракта.

Неподготовленный слушатель, возможно, не заметит данного эффекта или не придаст ему значения, но в индустрии Hi-Fi и High End, когда всякая мелочь имеет значение, такое соседство не приветствуется и вынуждает инженеров совершенствовать фильтрующие схемы и идти на прочие ухищрения, чтобы исключить влияние вредоносного СВЧ-генератора несущей частоты на воспроизводимый аудиосигнал.

Высокий КПД усилителей класса D стал причиной одной специфической особенности: высокой зависимости качества и характера звучания от блока питания. Если производитель решит использовать импульсный источник питания и не озаботится достаточным количеством фильтрующих схем, часть шумов обязательно проникнет в колонки и подпортит впечатление от звучания. Плохой блок питания, конечно, и классу АВ на пользу не пойдет, но именно в классе D эта проблема проявляется наиболее остро.

Особенности усилителей класса D

Описание плюсов и минусов схемотехники класса D дают совершенно недвусмысленные намеки на то, чем в первую очередь должны заниматься разработчики, которые стремятся добиться от усилителей максимального качественного звука.

Проблему питания усилителей класса D разработчики решают двумя способами. Одни идут проверенным путем, используя классические линейные блоки питания с огромными тороидальными трансформаторами и прочими классическими решениями. Но есть и другой путь, которым идет меньшая часть разработчиков. При должном умении вполне можно создать малошумящий импульсный блок питания, пригодный для установки в усилителях высшего класса качества. И именно они способны дать фору самым мощным и солидным линейным блокам питания за счет лучшего КПД и быстродействия, а как следствие — лучшей динамики звучания и мгновенной реакции усилителя на большие перепады уровней сигнала.

Что же касается специфики работы самого усилителя класса D, его схемотехника обеспечивает существенно более высокий коэффициент демпфирования в сравнении с классом АВ и другими схемотехническими решениями. Это гарантирует не только стабильную работу со сложной нагрузкой, быстрый, четкий бас и большой динамический диапазон, но также обеспечивает меньший уровень искажений, отсутствие каши, вялой атаки или смазывания фронтов и самое главное — способность усилителя одинаково справляться с совершенно разноплановой музыкой.

Выводы

Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук. Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.



Класс G и H —  эти технологии имеют куда больше общих черт, нежели отличий, поэтому их частенько путают между собой, а одну и ту же технологию в зависимости от страны могут обозначать разными буквами. Но как их ни назови, суть дела принципиально не меняется. И класс G, и класс H являются ближайшими родственниками класса АВ, но превосходят его по энергоэффективности. Иными словами — продолжают общую тенденцию развития усилителей, которая наметилась с появлением класса В.

История создания усилителей класса G и H

Предпосылкой к созданию усилителей класса G был факт нелинейности уровня музыкального сигнала. Большую часть времени музыка звучит на малом и среднем уровне, когда от усилителя не требуется большая мощность. Но для того, чтобы без потерь отработать редко встречающиеся в музыке динамические всплески, требующие большой отдачи энергии, усилитель приходится держать в режиме высокой мощности постоянно. В то же время из соображений экономии было бы неплохо, если бы блок питания усилителя работал на полную лишь в те моменты, когда это требуется для отработки громких звуков, а все остальное время потреблял меньше энергии от сети.

Над этой задачей думало немало инженеров середины ХХ века, но первым решил ее в 1964 году сотрудник NASA Мануэль Крамер. Он разработал схемотехнику, в которой усилитель имеет несколько шин питания, и их переключение меняет мощность (и энергопотребление) усилителя в зависимости от того, какова величина громкости входящего сигнала.

Первое практическое применение схемотехнике класса G нашли инженеры Hitachi, наладившие серийный выпуск усилителей такого типа в 1977 году. Именно в тот момент и появилось само понятие «класс G». Аналогичную схему в 1981 году реализовал небезызвестный Боб Карвер и дал своему детищу другое маркетинговое название — «класс H», на некоторое время закрепившееся в американской прессе. Несколько позже схема пережила существенное усовершенствование и появился тот вариант, который сейчас и называют классом H, а все предыдущие вариации, включая то, что изначально делал Боб Карвер, были объединены под названием «класс G».

Принцип работы усилителей класса G и H

Принцип работы усилителей класса G и класса H можно описать буквально в двух словах. Их сигнальная часть аналогична усилителям класса А/В и на малой громкости работает в точно таком же режиме (напомним, что на низких уровнях сигнала класс A/B работает в классе А). Весь секрет кроется в блоке питания, который отслеживает уровень входящего сигнала. Как только уровень громкости поднимается, блок питания повышает напряжение питания, тем самым давая возможность усилителю работать с большей амплитудой, и понижает напряжение, как только уровень сигнала на входе падает.

ARCAM SA 30 1.jpg    
Интегральный усилитель класса G/H - Arcam SA30

Отличие класса G от класса H кроется в том, как именно происходит изменение уровня напряжения питания. В классе G блок питания имеет несколько обмоток трансформатора, формирующих питающие шины с разными уровнями напряжения. При повышении уровня входящего сигнала происходит дискретное повышение напряжения питания — либо путем перехода на более высоковольтную шину, либо путем суммирования напряжений основной и дополнительной шин питания.

ARCAM SA 30 2.jpg    
Интегральный усилитель класса G/H - Arcam SA30

Таких ступеней повышения питания может быть несколько. В упрощенном виде это происходит следующим образом: пока уровень сигнала находится на малом уровне, усилитель имеет максимальную мощность 10 Вт. Как только уровень громкости повышается, подключается дополнительное питание, и запас мощности увеличивается до 100 Вт, а на пиках подключается еще один каскад питания, и усилитель выдает 300 Вт. Поскольку даже в самой ритмичной и агрессивной музыке большие энергетические всплески непостоянны, фактическое энергопотребление усилителя класса G оказывается ближе к показателям его минимальной, а не максимальной мощности.

ARCAM SA 30 3.jpg    
Интегральный усилитель класса G/H - Arcam SA30

Появившийся спустя некоторое время класс H фактически является версий класса G с плавно изменяемым уровнем питающего напряжения. Схемы, отслеживающие уровень входящего сигнала, повышают и понижают напряжение питания не ступенчато, а плавно, сообразно величине нарастания и снижения уровня входного сигнала. В простых версиях повышение напряжения питания обеспечивается за счет конденсаторов вольт-добавки, в более сложных — дополнительная секция питания, по сути, представляет собой еще один усилитель мощности. Как и в классе G, на малых уровнях сигнала класс H работает без изменения уровня питающего напряжения аналогично обычному классу А/В.

Плюсы усилителей класса G и H

Очевидный плюс усилителей классов G и H — лучшая энергоэффективность. При прочих равных они потребляют меньше энергии, чем усилители класса АВ. Кроме того, поскольку основную часть времени усилители классов G и H работают с пониженным напряжением питания, они рассеивают меньше тепла и требуют радиаторов меньшего размера, чем аналогичные усилители класса АВ. На фоне более современных усилителей класса D класс G и H имеют одно заметное отличие — сохранение привычного характера звучания, свойственного классу АВ. Если же сравнивать классы G и H между собой, можно отметить простоту конструкции последнего.

Минусы усилителей класса G и H

Продолжая тему снижения энергопотребления, нельзя не отметить и тот факт, что переход от класса А к классу АВ дал куда более существенный прирост КПД усилителя, нежели переход от АВ к G или H. При этом класс D превосходит по энергоэффективности все предыдущие классы куда более существенно, и на его фоне разница между классом АВ и классами G/H начинает казаться совершенно незначительной. В свете этого на первый план выходит вопрос технически более сложной схемотехники классов G и H. Фактически, эта конструкция в полтора-два раза сложнее обычного класса АВ со всеми вытекающими из этого рисками снижения надежности и стабильности работы.

Особенности усилителей класса G и H

Разберемся, что же мы получаем в лице класса G и H с пользовательской точки зрения. Первое — это сочетание компактности, энергоэффективности и классического характера звучания. Если хочется мускулистого, но не слишком прожорливого усилителя, а класс D не устраивает по идеологическим причинам, классы G и H — ваш выбор. Привычный характер класса АВ, дополненный динамикой и мощью класса D, к вашим услугам.

Второе преимущество не столь очевидно, но, в действительности, более значительно. Имея солидный запас энергии, усилители классов G и H лучше справляются со сложной нагрузкой. Такой аппарат куда спокойнее реагирует на акустику с низкой чувствительностью или модели, требующие высокой подводимой мощности. Это позволяет расширить выбор колонок и избежать нагромождения усилителей мощности в системе.

Выводы 

Если класс А/В имеет полное право называться решением практичным, класс G (и примкнувший к нему класс H) вполне может претендовать на титул с приставкой «супер» или «экстра». Он может все то же самое, что лучшие представители класса А/В, но делает это более легко и красиво. Для того, чтобы получить ту динамику звучания и ту степень контроля баса, которую выдал один скромный усилитель класса G, нам понадобились бы два огромных моноблока, работающих в классе А, один солидный мощник класса А/В или… всего лишь один миниатюрный усилитель класса D. Но это уже совсем другая история. А в мире классической схемотехники классы G и H совершенно однозначно находятся на высшей ступени эволюции.



Класс XD и XA: мысли о том, как усовершенствовать всем хорошо известную схемотехнику, посещают как энтузиастов-любителей, так и инженеров, работающих в компаниях по производству Hi-Fi. Во втором случае каждое существенное нововведение патентуется и получает маркетинговое название. А в особых случаях даже рождается новый класс усиления. Например, у Cambridge Audio есть таких целых два: класс XD и класс XA. Впрочем, тут стоит разобраться получше, идет ли речь о принципиально ином принципе работы усилителя или же это просто красивое маркетинговое название незначительного усовершенствования.

История создания усилителей класса XD и XA

В текущей линейке усилителей Cambridge Audio присутствуют две серии компонентов: усилители в одной из них реализованы с применением схемотехники класса XD, а в другой — с применением схемотехники класса XA. Речь идет о старшей серии Azur 851 и флагманской Edge. В обоих случаях усилители выдают порядка 100–200 Вт мощности на канал в зависимости импеданса нагрузки, да и остальные характеристики, включая энергопотребления и уровень искажений, у них довольно схожи. А самое любопытное — описания технологий XD и XA достаточно общие и по своей сути они практически полностью совпадают.

Принцип работы усилителей класса XD и XA

Для того, чтобы понять принцип работы усилителей классов XD и XA, необходимо вспомнить, в чем состоят отличия между классом B и классом АВ. В классе B положительную и отрицательную полуволну сигнала воспроизводят два транзистора, включенные в схему зеркально относительно друг друга. Прохождение сигналом нулевой точки совпадает с моментом переключения транзисторов, которые именно в момент включения и выключения работают неидеально, привнося в звучание искажения и артефакты. Кроме того, закрывающийся транзистор может переставать работать до момента когда уровень сигнала достигнет нуля, а открывающийся включается в работу с некоторой задержкой.

cambridge-audio-edge-a-vollverstaerker-55840.jpg 
Интегральный усилитель класса XA - Cambridge Audio Edge A

Для решения этой проблемы был разработан класс АВ. Он решает проблему переключения транзисторов, благодаря наложению рабочих диапазонов двух транзисторов, работающих в паре, и создавая в районе нулевой точки сигнала зону для работы обоих транзисторов. Такой подход, действительно, улучшает звучание, поэтому большинство разработчиков сконцентрировали свои дальнейшие поиски на выборе глубины смещения, определяющей до какого уровня громкости оба транзистора находятся в рабочем состоянии, а усилитель работает в режиме, приближенном к классу А.

cambridge-audio-edge-a-vollverstaerker-55845.jpg 
Интегральный усилитель класса XA - Cambridge Audio Edge A

В то же самое время разработчики Cambridge Audio обратили внимание на другой немаловажный факт: нулевая точка — это самое уязвимое место в музыкальном сигнале, и, несмотря на все ухищрения со смещением, производимые в классе АВ, все же куда лучше, когда нулевую точку сигнала воспроизводит один транзистор, и его затвор не балансирует на грани открытия или закрытия. А чтобы эта затея не превратилась в заново изобретенный класс А, в котором средняя точка сигнала приходится как раз на середину рабочего режима единственного транзистора, было разработано смелое и оригинальное решение.

dz0xMjAwJmg9MTE2Mw==_src_57649-wzmacniacz-cambridge-audio-edge-a-audiocompl-fot2.jpg 
Интегральный усилитель класса XA - Cambridge Audio Edge A

В схемотехнике класса XD, как и в классе АВ, используются пары транзисторов, но точка их переключения смещена относительно нулевой точки воспроизводимого сигнала. Таким образом, один транзистор воспроизводит всю положительную и часть отрицательной полуволны, а другой транзистор дорабатывает оставшуюся часть отрицательной полуволны. Принципиальное отличие класса XA от XD состоит в большей величине смещения точки переключения, в результате чего режим работы в большей степени приближен к классическому классу А, однако сохраняет некоторые преимущества симметричной двухтранзисторной схемы.

Плюсы усилителей класса XD и XA

Тот факт, что в усилителях класса XA и XD нулевая точка сигнала приходится в стабильную рабочую зону одного из двух транзисторов сильно роднит этот тип усиления с классом А. Это значит, что на минимальных уровнях громкости мы получим чистый, не искаженный звук. При этом наличие второго плеча обещает лучшую энергоэффективность и способность воспроизводить значительные динамические всплески сигнала без медлительности и компрессии.

Минусы усилителей класса XD и XA

Последний факт, упомянутый в плюсах, является неоспроимым только на фоне усилителей класса А. Если же сравнивать схемотехнику с приставкой X с традиционным классом АВ, то становится очевидно, что при прочих равных классы XD и XA проигрывают ему и по энергопотреблению, и по максимальной амплитуде. Чем больше выбрано смещение переходной точки относительно нулевой точки сигнала, тем меньший запас по амплитуде он будет иметь в отрицательном плече сигнала, и тем ближе к классу А окажется режим работы транзистора, обслуживающего положительную полуволну. Однако, не имея на руках точных данных, оценить, насколько заметны эти отличия будут на практике, довольно проблематично, но в теории ситуация выглядит именно так.

Особенности усилителей класса XD и XA

А теперь взглянем на все это с аудиофильской точки зрения. Тот факт, что средний уровень сигнала теперь приходится на вполне стабильную рабочую зону транзистора, говорит о том, что тихие звуки и камерная музыка будут воспроизводиться не хуже, чем на усилителях, работающих в чистом классе А. При этом мы с полным правом можем ожидать звучания настолько же энергичного и свободного в динамических пассажах, как и у усилителей класса АВ. Единственный не очевидный момент — как поведет себя усилитель при нагрузке близкой к предельной. Характер искажений будет отличаться от усилителей других классов вследствие асимметрии нагрузки транзисторов.

Выводы

Классы XD и XA, действительно, оригинальны с точки зрения схемотехники и отличаются от класса АВ не меньше, чем сам класс АВ отличается от чистого класса В. Это можно понять, не только анализируя схемотехнику, но и сопоставляя полученную теоретическую информацию с результатами сравнительных прослушиваний. Усилители Cambridge Audio отличаются от классических моделей аналогичного класса более чистым и прозрачным звучанием, а по совокупности впечатлений являют собой некий гибрид красоты и чистоты звучания класса А с динамикой класса АВ. Одним словом, очередной аудиофильский Святой Грааль найден. И, как это часто бывает, он понравится отнюдь не всем. Так что закроем эту тему и вскоре продолжим разговор о еще одном классе усиления.



Ламповые усилители: классы усиления — вполне логичный и понятный способ отличить одну типовую схему от другой. Однако, применительно к ламповой схемотехнике такого подхода оказалось недостаточно. В зависимости от типа, лампы способны работать в различных режимах, которые при этом одинаково применимы в усилителях разных классов. Этот факт кратно увеличивает количество возможных сочетаний, не говоря уже о том, что режимы работы ламп можно модифицировать, комбинировать и объединять. Столь глубоко в схемотехнику мы, конечно, погружаться не будем, но постараемся разобраться в базовых понятиях.

История создания ламповых усилителей 

Радиолампы, как и другие электронные компоненты, имеют богатую историю, в ходе которой произошла заметная эволюция. Началось все в нулевых годах прошлого века, а закатом ламповой эры можно считать шестидесятые годы, когда свет увидела последняя фундаментальная разработка — миниатюрные радиолампы нувисторы, а транзисторы уже начали активно завоевывать рынок. Но из всей истории нас интересуют лишь ключевые этапы, когда были созданы основные типы радиоламп и разработаны основные схемы их включения.

Первой разновидностью радиоламп, разработанной для создания усилителей, были триоды. Цифра 3 слышится в названии не случайно — именно столько активных выводов имеет триод. Принцип работы триода предельно прост. Между анодом и катодом лампы последовательно включаются источник питания и первичная обмотка выходного трансформатора (ко вторичной обмотке которого подключается акустика). Полезный сигнал подается на сетку лампы. При подаче напряжения в схему усилителя между катодом и анодом протекает поток электронов, а расположенная между ними сетка модулирует этот поток соответственно изменениям уровня входящего сигнала.

В ходе использования триодов в различных отраслях промышленности потребовалось улучшить их характеристики. Одной из таких характеристик была проходная емкость, величина которой ограничивала максимальную рабочую частоту лампы. В процессе решения этой проблемы появились тетроды — радиолампы, имеющие внутри не три, а четыре электрода. Четвертым стала экранирующая сетка, установленная между управляющей сеткой и анодом. Задачу повышения рабочей частоты это решало в полной мере, что вполне удовлетворило создателей технологии, разрабатывавших тетроды для того, чтобы радиостанции и радиоприемники работали в коротковолновом диапазоне, имеющим более высокие несущие частоты нежели средне- и длинноволновый.

С точки зрения качества воспроизведения звука тетрод не превзошел триод принципиально, поэтому другая группа ученых, озадаченная вопросами воспроизведения звуковых частот, усовершенствовала тетрод, используя, по сути, тот же подход — просто добавив в конструкцию лампы еще одну дополнительную сетку, располагающуюся между экранирующей сеткой и анодом. Это было необходимо для того, чтобы подавить динатронный эффект — обратную эмиссию электронов от анода к экранирующей сетке. Подключение дополнительной сетки к катоду препятствовало этому процессу, делая выходную характеристику лампы более линейной и повышая выходную мощность. Так появился новый тип ламп: пентод.

Принцип работы ламповых усилителей 

Все вышеупомянутые типы ламп в том или ином виде нашли применение в аудиотехнике. При этом пытливые умы аудиоинженеров постоянно искали пути наиболее эффективного их использования. Довольно быстро они пришли к выводу, что место включения экранирующей сетки пентода в схему усилителя — это инструмент, с помощью которого можно принципиально изменить режим его работы. При подключении сетки к катоду мы имеем классический пентодный режим, если же переключить сетку на анод — пентод начинает работать в режиме триода. Это позволяет объединить два типа усилителя в одном с возможностью смены режима с помощью простого переключателя.

gb1.jpg 
Ламповый интегральный усилитель - Luxman MQ-300

Но и этим дело не ограничилось. В 1951 году американские инженеры Дэвид Хафлер и Харберт Керос предложили подключать сетку пентода совершенно иным способом: к промежуточным отводам первичной обмотки выходного трансформатора. Такое подключение является чем-то средним между чистым триодным и чистым пентодным включением, давая возможность комбинировать свойства обоих режимов. Таким образом, с режимами ламп произошла та же история, что и с классами усиления, когда вслед за «чистыми» классами А и В появился комбинированный класс АВ, сочетающий сильные стороны двух предыдущих.

gb2.jpg 
Ламповый интегральный усилитель - Luxman MQ-300

В том, что касается сочетания режимов работы ламп и классов усиления, они могут комбинироваться произвольным образом, что приводит к изрядной путанице и даже жарким спорам в рядах неофитов. Не добавляет ясности и тот факт, что разработчики ламповых усилителей в большинстве случаев указывают не класс усилителя, а принцип схемотехники: однотактный — SE (Single Ended) или двухтактный — PP (Push-Pull). В итоге, пентоды и тетроды нередко ассоциируют исключительно с классом АВ и двухтактной схемой в целом, а триод, напротив, считают синонимом класса А и сугубо однотактного включения. На самом же деле, ни что не препятствует переключить усилитель, работающий в классе А, в пентодный или ультралинейный режим, а на паре триодов можно собрать двухтактный усилитель, работающий в классе В или АВ.

Luxman MQ-300 1.jpg 
Ламповый интегральный усилитель - Luxman MQ-300

Предпосылкой к неверным ассоциациям является частота использования тех или иных режимов в различных классах усиления. Триоды чаще используют в однотактных схемах и классе А. В свою очередь, пентоды и тетроды лучше подходят для работы в двухтактных схемах, хотя переключение их в триодный режим — реальная опция, встречающаяся на усилителях, работающих в классе АВ, и не имеющая ровным счетом никакого отношения к классу А.

Плюсы ламповых усилителей 

Традиционный триодный режим работы лампы имеет как минимум одно значимое преимущество: способность работать без обратной связи. Пентодный режим имеет свои плюсы: большую линейность работы и возможность достигать более высокой мощности. Ультралинейный режим дает возможность отказаться от общей обратной связи и при этом сохранить мощность, близкую к пентодному включению. При этом триод при прочих равных обходит оба варианта по уровню собственного шума лампы.

Минусы ламповых усилителей 

Слабые места одних режимов ламп вполне закономерно можно обнаружить там, где проявляются сильные места других. Триодный режим имеет меньший КПД и меньшую линейность, хуже переносит динамические нагрузки. Пентодный и ультралинейный режимы проигрывают по уровню шумов, к тому же на практике оказываются более зависимы от качества выходных трансформаторов. Пентодный усилитель невозможен без общей обратной связи, и она может понадобиться в некоторых вариантах ультралинейного режима.

Особенности ламповых усилителей 

С точки зрения качества и характера звучания каждый тип ламп и каждый режим включения имеет свои особенности, настолько очевидные на слух, что даже ультралинейный режим, по факту, не стал золотой серединой. Триоды в чистом виде и триодное включение пентодов обеспечивают наиболее чистый и объемный звук до тех пор, пока дело не дойдет до энергичной музыки с быстрыми и значительными по амплитуде перепадами громкости. Иными словами — для спокойного джаза триоды подходят куда лучше, чем для прослушивания рока.Пентодный и ультралинейный режимы, напротив, больше подходят для энергичной музыки, но в ряде случаев звучат недостаточно чисто, точно и детально. Особенно часто эти претензии относятся к пентодному режиму, а в целом характер звучания и пентодного, и ультралинейного режимов нередко сравнивают с транзисторными усилителями.

Выводы

Каждый режим работы лампы в усилителе имеет свои плюсы и минусы, которые дают хорошо различимые на слух отличия в звучании. Учитывая, что ламповая техника — это всегда техника с характером, выбор усилителя, работающего в том или ином режиме (или переключение режимов на самом усилителе), является инструментом пользователя, позволяющим подобрать усилитель согласно индивидуальным предпочтениям.